Analytic Regularity of Solutions of Livsic's Cohomology Equation and Some Applications to Analytic Conjugacy of Hyperbolic Dynamical Systems
نویسنده
چکیده
We study Livsic's problem of nding satisfying X = where is a given function and X is a given Anosov vector eld. We show that, if is a continuous solution and X; are analytic, then is analytic. We use the previous result to show that if two low-dimensional Anosov systems are topologically conjugate and the Lyapunov exponents at corresponding periodic points agree, the conjugacy is analytic. Analogous results hold for diieomorphisms.
منابع مشابه
Holonomies and Cohomology for Cocycles over Partially Hyperbolic Diffeomorphisms
We consider group-valued cocycles over a partially hyperbolic diffeomorphism which is accessible volume-preserving and center bunched. We study cocycles with values in the group of invertible continuous linear operators on a Banach space. We describe properties of holonomies for fiber bunched cocycles and establish their Hölder regularity. We also study cohomology of cocycles and its connection...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملAnalyzing dynamical snap-through of a size dependent nonlinear micro-resonator via a semi-analytic method
In the present paper, the dynamical snap-through of a preloaded micro-sensor is analyzed. This behavior is linked to analyzing bifurcation behavior of the micro structure in a suitable framework. Effec...
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989